DeepPath: A Reinforcement Learning Method for Knowledge Graph Reasoning

نویسندگان

  • Wenhan Xiong
  • Thien Hoang
  • William Yang Wang
چکیده

We study the problem of learning to reason in large scale knowledge graphs (KGs). More specifically, we describe a novel reinforcement learning framework for learning multi-hop relational paths: we use a policy-based agent with continuous states based on knowledge graph embeddings, which reasons in a KG vector space by sampling the most promising relation to extend its path. In contrast to prior work, our approach includes a reward function that takes the accuracy, diversity, and efficiency into consideration. Experimentally, we show that our proposed method outperforms a path-ranking based algorithm and knowledge graph embedding methods on Freebase and Never-Ending Language Learning datasets.1

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Guiding Inference with Policy Search Reinforcement Learning

Symbolic reasoning is a well understood and effective approach to handling reasoning over formally represented knowledge; however, simple symbolic inference systems necessarily slow as complexity and ground facts grow. As automated approaches to ontology-building become more prevalent and sophisticated, knowledge base systems become larger and more complex, necessitating techniques for faster i...

متن کامل

Graph-Based Reasoning and Reinforcement Learning for Improving Q/A Performance in Large Knowledge-Based Systems

Learning to plausibly reason with minimal user intervention could significantly improve knowledge acquisition. We describe how to integrate graph-based heuristic generalization, higher-order knowledge, and reinforcement learning to learn to produce plausible inferences with only small amounts of user training. Experiments on ResearchCyc KB contents show significant improvement in Q/A performanc...

متن کامل

Go for a Walk and Arrive at the Answer: Reasoning Over Paths in Knowledge Bases using Reinforcement Learning

Knowledge bases (KB), both automatically and manually constructed, are often incomplete — many valid facts can be inferred from the KB by synthesizing existing information. A popular approach to KB completion is to infer new relations by combinatory reasoning over the information found along other paths connecting a pair of entities. Given the enormous size of KBs and the exponential number of ...

متن کامل

ReinforceWalk: Learning to Walk in Graph with Monte Carlo Tree Search

Learning to walk over a graph towards a target node for a given input query and a source node is an important problem in applications such as knowledge graph reasoning. It can be formulated as a reinforcement learning (RL) problem that has a known state transition model, but with partial observability and sparse reward. To overcome these challenges, we develop a graph walking agent called Reinf...

متن کامل

Go for a Walk and Arrive at the Answer: Reasoning Over Paths in Knowledge Bases with Reinforcement Learning

Knowledge bases (KB), both automatically and manually constructed, are often incomplete — many valid facts can be inferred from the KB by synthesizing existing information. A popular approach to KB completion is to infer new relations by combinatory reasoning over the information found along other paths connecting a pair of entities. Given the enormous size of KBs and the exponential number of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017